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Abstract

Dynamic models of elastic structures are derived using approximations
of linear three dimensional elasticity. A model for the three dimensional
motion of a nonsymmetric structure that is of use for applications to
health monitoring for buildings is obtained. The symmetric version of
the model is validated using laboratory acceleration data. Narrow plate
equations whose derivation is based on similar consideration but with plate
thinness assumptions are used in a probabilistic inversion for elastic and
mass properties from acceleration data. Finally, predictions of structural
behavior based on the information from the inversion problem are made.

1. Introduction.

We derive three dimensional dynamic models for structures. The derivation is
analogous to that of the so-called narrow plate models of intermediate natu-
ral between beams and plates. In [7, 8, 9] narrow plate models are presented.
Also, narrow plate models are validated against spectral data and static models
are studied. In the current work, however, dynamic time dependent models
are presented and derived without the thickness assumption imposed on plates
[2,4,7,8,9]. Displacement approximations are assumed that are similar to those
for narrow plates and generalizations of Timoshenko beam models [1]. How-
ever, they are specializations of the Mindlin plate model [4]. The objective of
our modelling effort is to obtain a three dimensional model that is suitable for
assessment of the structural health of buildings. Our model allows for nonsym-
metric properties in the structure. However, at this early stage of development
we present the model, but compare only to laboratory structures that are sym-
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metric. A numerical inversion of acceleration data is presented as well as pre-
dictions of likely structural responses based on a posteriori probability density
functions.

In Section 2 we present the derivation of the equations that include base
motion. The derivations are based on the small displacement gradient assump-
tion of linear elasticity [2]. Geometric symmetry of the structure about a central
axis is assumed. However, in order to accommodate possible structural damage,
material properties are not assumed symmetric. The spatially discrete time de-
pendent model is presented that includes a moving base. In Section 3 we present
a specialization of our model to the classical Euler-Bernoulli beam with a tip
mass to illustrate a comparison between our model and the tip mass model. In
Section 4 we compare our computed accelerations with those observed in the
laboratory. We find that our results qualitatively support this application of
the model. In Section 5 we formulate a inverse problem using acceleration data
to provide probabilistic estimates of material parameters. These estimates are
then used to make predictions of likely behavior of the structure under a given
force.

2. The underlying model equations.

Although the sets for which we develop our theory are more general than the
rectangular solid we deal with here, we focus here on sets Ω in R3 defined by

Ω = {(x, y, z) : 0 < x < L,−k < y < k,−h < z < h}.
The parameters k and h are assumed to be roughly the same size. Displacements
in the x, y, and z directions are designated by u, v, and w, respectively, as
indicated in Figure 1.

We assume the material is isotropic and the small displacement gradient
assumption applies [2]. The strains are expressed as

(2.1) ε11 =
∂u

∂x

ε12 =
1
2
(
∂u

∂y
+

∂v

∂x
)

ε13 =
1
2
(
∂u

∂z
+

∂w

∂x
)

ε22 =
∂v

∂y

ε23 =
1
2
(
∂v

∂z
+

∂w

∂y
)
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ε33 =
∂w

∂z
.

The stresses are expressed as

(2.2) σ11 =
E

(1 + µ)(1− 2µ)
[(1− µ)ε11 + µε22 + µε33]

σ12 =
2E

1 + µ
ε12

σ13 =
2E

1 + µ
ε13

σ22 =
E

(1 + µ)(1− 2µ)
[µε11 + (1− µ)ε22 + µε33]

σ23 =
2E

1 + µ
ε23

σ33 =
E

(1 + µ)(1− 2µ)
[µε11 + µε22 + (1− µ)ε33]

where E is Young’s modulus and µ is Poisson’s ratio. We do not impose geo-
metric assumptions on the stresses at this point as is done with beam and plate
models. Nevertheless, displacements are constrained under an assumption that
the length dimensions in the y and z dimensions are roughly the same order.
The displacement functions are expanded as truncated series in y and z with
coefficients as functions of x. Towards this end displacement functions

(2.3) u(x, y, z) = u0(x) + zu1(x) + yu2(x) + yzu3(x)

v(x, y, z) = v0(x) + zv1(x) + z2v2(x)

w(x, y, z) = w0(x) + yw1(x) + y2w2(x).

These expressions amount to approximation in the y and z variables in a phys-
ically meaningful way. The stress-free boundary conditions on the lateral faces
are variational boundary conditions and, hence, are not imposed on the approx-
imating elements. It follows that the corresponding strains are given by

(2.4) ε11 = u0x + zu1x + yu2x + yzu3x

ε12 =
1
2
{u2 + v0x + z(u3 + v1x) + z2v2x}

ε13 =
1
2
{u1 + w0x + y(u3 + w2x) + y2w2x}
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ε22 = 0

ε23 =
1
2
{v1 + w1 + 2zv2 + 2yw2}

ε33 = 0.

The stresses are expressed as

(2.5) σ11 =
(1− µ)E

(1 + µ)(1− 2µ)
[u0x + zu1x + yu2x + yzu3x]

σ12 =
2E

1 + µ
[u2 + v0x + z(u3 + v1x) + z2v2x]

σ13 =
2E

1 + µ
[u1 + w0x + y(u3 + w1x) + y2w2x]

σ22 =
µE

(1 + µ)(1− 2µ)
[u0x + zu1x + yu2x + yzu3x]

σ23 =
2E

1 + µ
[v1 + w1 + 2zv2 + 2yw2]

σ33 =
µE

(1 + µ)(1− 2µ)
[u0x + zu1x + yu2x + yzu3x].

The energy due to strain is expressed as

(2.6) V =
1
2

∫

Ω

{σ11ε11 + 2σ12ε12+

+2σ13ε13 + σ22ε22 + 2σ23ε23 + σ22ε22}dzdydx

Substituting relations from (2.4) and (2.5) into (2.6), we obtain

(2.7) V =
1
2

∫

Ω

{ (1− µ)E
(1 + µ)(1− 2µ)

[u0x + zu1x + yu2x + yzu3x]2

+
2E

1 + µ
[u2 + v0x + z(u3 + v1x) + z2v2x]2+

+
2E

1 + µ
[u1 + w0x + y(u3 + w1x) + y2w2x]2+

+
2E

1 + µ
[v1 + w1 + 2zv2 + 2yw2]2}dzdydx.
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The Young’s modulus E and Poisson’s ratio µ are taken to be dependent on the
spatial variables. In general no symmetry in the functions E and µ is assumed;
hence,

E = E(x, y, z)

and
µ = µ(x, y, z).

Define the following matrix-valued functions of x.

(2.8)

k0(x) =
∫ k

−k

∫ h

−h

(1− µ(x, y, z))E(x, y, z)
(1 + µ(x, y, z))(1− 2µ(x, y, z))




1 z y yz
z z2 yz yz2

y yz y2 y2z
yz yz2 y2z y2z2


 dzdy

(2.9) a0(x) =
∫ k

−k

∫ h

−h

2E(x, y, z)
1 + µ(x, y, z)




1 z z2

z z2 z3

z2 z3 z4


 dzdy

(2.10) b0(x) =
∫ k

−k

∫ h

−h

2E(x, y, z)
1 + µ(x, y, z)




1 y y2

y y2 y3

y2 y3 y4


 dzdy

(2.11) c0(x) =
∫ k

−k

∫ h

−h

2E(x, y, z)
1 + µ(x, y, z)




1 2z 2y
2z 4z2 4zy
2y 4zy 4y2


 dzdy.

With these assignments the strain potential energy takes the form

(2.12) V =
1
2

∫ L

0

{[u0 u1 u2 u3]x k0(x)




u0

u1

u2

u3




x

+

+[u2 + v0x u3 + v1x v2x] a0(x)




u2 + v0x

u3 + v1x

v2x


 +

+[u1 + w0x u3 + w1x w2x] b0(x)




u1 + w0x

u3 + w1x

w2x


 +

+[v1 + w1 v2 w2]c0(x)




v1 + w1

v2

w2


}dx.
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Define the vector-valued function x 7→ V(x) from R 7→ R10

V(x) = [u0(x) u1(x) u2(x) u3(x) v0(x) v1(x) v2(x) w0(x) w1(x) w2(x)]T

where T designates vector transpose. We write the strain energy explicitly in
terms of V by introducing the following matrices

Pu =




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0




Pv =




0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0




Pw =




0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




P1 =




0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




P2 =




0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




P3 =




0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1


 .

With these assignments, the strain energy functional may be written as

(2.13) V =
1
2

∫ L

0

{VT
x PT

u k0(x)PuVx + [P2V + PvVx]T a0(x)[P2V + PvVx]+

+[P1V + PwVx]T b0(x)[P1V + PwVx] + VT PT
3 c0(x)P3V}dx.

Finally, for convenience define the matrices

(2.14) k(x) = PT
u k0(x)Pu + PT

v a0(x)Pv + PT
w b0(x)Pw

(2.14) a(x) = PT
u a0(x)P2 + PT

w b0(x)P1

(2.15) b(x) = PT
2 a0(x)P2 + PT

1 b0(x)P1 + PT
3 c0(x)P3
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and express the strain energy as

(2.16) V =
1
2

∫ L

0

{VT
x k(x)Vx + VT

x a(x)V + VT a(x)T Vx + VT b(x)V}dx.

To introduce dynamics, we assume that the functions u, v, and w are de-
pendent also on time t so that V = V(x, t). Introducing the density function
(x, y, z) 7→ ρ(x, y, z) defined on Ω, the kinetic energy quadratic functional is
given as

(2.17) K =
1
2

∫

Ω

ρ(x, y, z)[u2
t + v2

t + w2
t ]dzdydx

where the displacement functions are considered to be dependent on time as
well as space. Substituting the expressions from (2.3) for u, v, and w, we have

K =
1
2

∫

Ω

ρ(x, y, z){[u0t + zu1t + yu2t + yzu3t]2+

(2.18) +[v0t + zv1t + z2v2t]2 + [w0t + zw1t + z2w2t]2}dzdydx.

Introducing the matrix
(2.19)

m(x) =
∫ k

−k

∫ h

−h

ρ(x, y, z)




1 z y yz 0 0 0 0 0 0
z z2 yz yz2 0 0 0 0 0 0
y yz y2 y2z 0 0 0 0 0 0
yz yz2 y2z y2z2 0 0 0 0 0 0
0 0 0 0 1 z z2 0 0 0
0 0 0 0 z z2 z3 0 0 0
0 0 0 0 z2 z3 z4 0 0 0
0 0 0 0 0 0 0 1 y y2

0 0 0 0 0 0 0 y y2 y3

0 0 0 0 0 0 0 y2 y3 y4




dzdy,

the expression for kinetic energy can be written as

(2.20) T =
1
2

∫ L

0

Vt(x, t)T m(x)Vt(x, t)dx.

The work done by external forces is expressed as

(2.21) W =
∫ L

0

f(x, t)T V(x, t)dx.

Forming the Lagrangian and applying Hamilton’s principle [5] yields an initial
boundary value problem. Finally, including a damping term for energy dissipa-
tion, we obtain
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(2.22) mVtt + cVt − (kVx + aV)x + aT Vx + bV = f

with initial conditions

(2.23) V(·, 0) = V0

V(·, 0) = V1

and boundary conditions that must satisfy

δV(kVx + aV)|L0 = 0.

Under boundary conditions that are clamped at x = 0 and free at x = L,
we have

(2.24) V(0, t) = 0

and

(2.25) (kVx + aV)(L, t) = 0.

For many applications we want to include the possibility of a moving base.
Thus, we wish to have a boundary condition

V(0, t) = W(t)

To adjust our model, we define a new function

(2.26) U(x, t) = V(x, t)−W(t)

and substitute into the differential equation. Carrying out this procedure, we
obtain the equation

(2.27) mUtt + cUt − (kUx + aU)x + aT Ux + bU =

= f− [mWtt + cWt − (aW)x + bW]

with boundary conditions

(2.28) U(0, t) = 0

(2.29) [kUx + aU](L, t) = −aW(t).

Semidiscrete spatial approximations may be obtained using piecewise linear
elements defined on a nonuniform mesh on (0, L), [6]. Let the interval (0, L) be
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partitioned into N subintervals [xi, xi+1] and let M = N + 1. Let {bi for i =
1, ..., M} be the functions given by

bi(x) =





x−xi−2
xi−1−xi−2

for x ∈ [xi−2, xi−1],
xi−x

xi−xi−1
for x ∈ [xi−1, xi],

0 otherwise,

Define the column M vector-valued function x 7→ b(x) = [b1(x), ..., bM (x)]T ,
and let 0 designate an M row-vector of zeros. Finally, define the 10 × 10M
matrix valued function

x 7→ B(x) =




b(x)T 0 ... 0 0
0 b(x)T 0 ... 0
... ... ... ... ...
0 0 ... 0 b(x)T




Let t 7→ c(t) denote the mapping from R into R10M where c(t) is a column
vector for each value of t. We consider functions to approximate the solution U
of the above initial boundary value problem expressed in the form

UN (x, t) = B(x)c(t).

Define the 10M × 10M matrices

(2.30) M =
∫ L

0

B(x)T m(x)B(x)dx

(2.31) C =
∫ L

0

B(x)T c(x)B(x)dx

(2.32) K =
∫ L

0

[BT
x (x)k(x)Bx(x) + BT

x (x)a(x)B(x) +

+ BT (x)aT (x)Bx(x) + BT (x)b(x)B(x)]dx

and the column vector

F =
∫ L

0

B(x)T [f − (mWtt + cWt + bW )]dx.

We use the weak form of the boundary value problem to obtain

(2.33) Mctt + Cct + Kc = F

with initial conditions

(2.34) c(0) = 0

(2.35) ct(0) = 0.
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3. Comparison of model with simple Euler-Bernoulli
with tip-mass.

In this section we specialize the model derived in Section 2 to show its relation
to the classic Euler-Bernoulli beam with a tip-mass. We assume the beam is
symmetric about the x axis and the beam density is piecewise constant on (0, L)
and constant for x ∈ (0, L1) and x ∈ (L1, L), respectively, see Figure 2. Our
equation for the beam with a tip mass is obtained as L1 is allowed to approach L.
To obtain the Euler-Bernoulli beam equation consider the displacement relations

(3.1) u(x, y, z) = −zw0x(x)

v(x, y, z) = 0

w(x, y, z) = w0(x)

in which the displacement in the x direction is due solely to the transverse
bending. In this case the strains are given as

(3.2) ε11 = −zw0xx

ε12 = ε13 = ε13 = ε22 = ε23 = ε33 = 0.

The stresses are expressed as

(3.3) σ11 = − z(1− µ)E
(1 + µ)(1− 2µ)

w0xx

σ12 = σ13 = σ22 = σ23 = σ33 = 0.

It follows that the strain energy is given by

(3.4) V =
1
2

∫

Ω

{ (1− µ)E
(1 + µ)(1− 2µ)

[zw0xx]2dzdydx

Integrating with respect to y and z, we obtain

(3.5) V =
1
2

∫ L

0

4h3k(1− µ)E
3(1 + µ)(1− 2µ)

w0
2
xxdx

The the expression for kinetic energy is determined as

(3.6) K =
1
2

∫ L

0

ρ(x){4h3k

3
w0

2
xt + 4hkw0

2
t}dx.
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Under the assumption that h is small, the h3 term is neglected. Hence, the
kinetic energy is

(3.7) K =
1
2

∫ L

0

ρ(x)4hkw0
2
t dx.

Since the density ρ is piecewise constant, we write

(3.8) K =
1
2
{
∫ L1

0

m1

4hkL1
4hkw0

2
t dx +

∫ L

L1

m

4hk(L− L1)
4hkw0

2
t dx}.

To obtain the tip mass expression, we take the limit of (3.8) as L1 −→ L.
Assuming the continuity of w0t we obtain the result

(3.9) K =
1
2

∫ L

0

ρw0
2
t dx +

m

2
w0(L, t)2t

where ρ represents a linear density ρ = m
L . The Lagrangian is thus given by

L =
1
2

∫ tf

0

{K −V }dt

and

(3.10) L =
1
2

∫ tf

0

{mw2
0t(L, t) +

∫ L

0

[ρw2
0t +

4h3k(1− µ)E
3(1 + µ)(1− 2µ)

w2
0xx]dx}dt

Calculating the variation of L, we obtain from Hamilton’s principle [5] that

(3.11) ρw0tt =
4h3(1− µ)E

3(1 + µ)(1− 2µ)
w0xxxx in (0, L)× (0, tf )

w0(0, t) = w0x(0, t) = 0 for t ∈ (0, tf )

w0xx(L, t) = 0 for t ∈ (0, tf )

w0tt(L, t) = − 4h3(1− µ)E
3(1 + µ)(1− 2µ)

w0xxx(L, t) for t ∈ (0, tf )

The expressions (3.10) and (3.11) coincide with those obtained for the Euler-
Bernoulli beam with tip mass [1]. Results comparing tip motion of a beam with
tip mass for the Euler-Bernoulli model and the narrow plate model described
in the previous section are compared in Figure 3. Certainly, the narrow plate
model has some higher frequency content. However, the correlation between the
two output is high at 0.94.
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4. The comparison of model output with labora-
tory data.

We assume that the Young’s modulus, Poisson’s ratio, and density are functions
of x only

E = E(x), µ = µ(x), and ρ = ρ(x)

the matrices k0, a0, b0, and m are expressed as

k0(x) =
(1− µ(x))E(x)

(1 + µ(x))(1− 2µ(x))




4hk 0 0 0
0 4h3k

3 0 0
0 0 4hk3

3 0
0 0 0 4h3k3

9




a0(x) =
2E(x)

1 + µ(x)




4hk 0 4h3k
3

0 4h3k
3 03

4h3k
3 0 4h5k

5




b0(x) =
2E(x)

1 + µ(x)




4hk 0 4hk3

3

0 4hk3

3 0
4hk3

3 0 4hk5

5




c0(x) =
2E(x)

1 + µ(x)




4hk 0 0
0 16h3k

3 0
0 0 16hk3

3


 .

m(x) = ρ(x)




4hk 0 0 0 0 0 0 0 0 0
0 4h3k

3 0 0 0 0 0 0 0 0
0 0 4hk3

3 0 0 0 0 0 0 0
0 0 0 4h3k3

9 0 0 0 0 0 0
0 0 0 0 4hk 0 4h3k

3 0 0 0
0 0 0 0 0 4h3k

3 0 0 0 0
0 0 0 0 4h3k

3 0 4h5k
5 0 0 0

0 0 0 0 0 0 0 4hk 0 4hk3

3

0 0 0 0 0 0 0 0 4hk3

3 0
0 0 0 0 0 0 0 4hk3

3 0 4hk5

5




.

The structure is depicted in Figure 4. The length of the structure is 31 inches
with the base 1 inch, floor 1 from 10 to 11 inches, floor 2 from 20 to 21 inches,
and floor 3 from 30 to 31 inches. The mass of the structure is concentrated in the
base and floors 1,2, and 3. The structure is disturbed by shaking the base. The
resulting acceleration time series of length 16000 with measurements at every
0.01 seconds is recorded along with observed accelerations at floors 1, 2, and 3.
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We thus set the force vector f to zero and obtain the associated base velocity and
displacement vector functions by integrating the acceleration record. In fact we
use a Daubechy level 12 wavelet approximation to smooth the acceleration time
series [3]. Base motion is portrayed in Figure 5. To approximate the equation,
we use a finite element basis of piecewise linear functions described previously
based on nodal locations

[0 1 4 7 10 11 14 17 20 21 24 27 30 31].

At this point we are interested primarily in the qualitative behavior of our
model. Hence, we set µ = 0. The only modelling of Young’s modulus and density
is that values of these parameters in intervals corresponding to the floors is very
large as compared with those intervals associated with regions between floors. A
small constant viscous damping term is also included. The initial value problem
is solved numerically using a 1 sec time step and compared with the Daubechy
12 wavelet approximation of the observed acceleration time series over a time
period of 155 seconds. The results are portrayed in Figures 6, 7, and 8. We note
that there is high correlation between signals over subintervals of the record in
which initial effects are not included. For the second floor a comparison of a
shifted records results in very high correlation of 0.97 compared to the 0.71
correlation without shifting. For these examples this seems to be qualitative
evidence of a valid model.

5. Inversion of acceleration data.

In this section we use acceleration data to estimate material properties of a
structure. We consider a slightly different set of displacement relations.

u(x, y, z, t) = u0(x, t) + zu1(x, t) + yzu2(x, t)

v(x, y, z, t) = v0(x, t) + zv1(x, t) + yzv2(x, t)

w(x, y, z, t) = w0(x, t) + yw1(x, t) + y2w2(x, t).

The model that we consider, a narrow ”bowed” plate, that is derived with the
above displacement relations and makes the plate thickness assumption that
normal forces on the surface may be view as body forces. The stress σ33 is set to
zero, and the resulting relation is used to solve for ε33 it terms of ε11 and ε22, see
[7,8,9]. A system of initial boundary value problems analogous to those obtained
in Section 2 are obtained by means of a similar procedure. In this case we have a
system of nine partial differential equations with a single spatial variable. The
solution is a column 9-vector V (x, t) = [u0, u1, u2, v0, v1, v2, w0, w1, w2](x, t)T .
The model we study allows for a base that satisfies a time dependent boundary
condition. In this particular instance, we consider a base motion defined by

V (0, t) = Amp ∗ ν(t)
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where

Amp =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.25 0
0 0 0 0 0 0 0 0 0




and
t 7→ ν(t)

is a vector valued function whose entries are

νi(t) =
{

sin(πt/30) for 0 ≤ t ≤ 30
0 otherwise,

for i = 1, ..., 9. In this application the boundary conditions are imposed by penal-
ization to force the structure boundary to comply with the specified boundary
condition. Figure 9 depicts a deformation in which t is less than 30 while Fig-
ure 10 shows a deformation in which t is greater than 30. In [7,8,9] estimation
problems are considered from an optimization point of view to determine pa-
rameters from among an admissible set minimizing the L2 norm of the error
between simulated output and observed output. Here we take a probabilistic
point of view and introduce a pdf constructed using the error that is defined on
a sample space consisting of admissible parameters, cf. [10]. The resulting joint
pdf carries the information from the model and the data on the parameters.
Initially the parameters are considered independent. Correlations among them
are a consequence of the model mapping taking parameters to system output.

The motivating application is the structure in Figure 4. However, in this
case we view the elastic, density, and damping parameters to be constants with
floors 1, 2, and 3 modelled as point masses at L/3, 2L/3, and L. In this model
even though the thickness assumptions apparently do not hold, torsional and
bowing motions of the structure are allowed. We define a parameter vector

q = [m1,m2,m3, µ, E, ρ, d0]T ,

and we consider the mapping

q 7→ V (q)(x, t) 7→ z(q)(t) = [wtt(L/3, t), wtt(2L/3, t), wtt(L, t)]T

that associates a parameter q with an output that is the transverse acceleration
at the points L/3, 2L/3, andL.

To test an inversion technique numerically, it is common to study an ”identi-
cal twin problem” in which a parameter q0 is specified and the associated output
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z0(t) = V (q0)(t) + noise is calculated. This output is then used in the inversion
algorithm to recover the parameter q0, or to determine the information supplied
by the data. This is done by defining a fit-to-data criterion

J(q) =
∫ tf

0

(z(q)(t)− z0(t))T M(z(q)(t)− z0(t))dt

expressing the error between computed outputs and the data. A ”solution” of
the estimation problem is a minimizer of J(q) over the admissible parameter set
Q.

In stochastic or probabilistic inversion, a probability density function over
the set Q by

q 7→ f(q) = Cexp[−1
2
J(q)].

The constant C is introduced as a normalization factor so that
∫

Q

f(q)dq = 1.

This resulting joint pdf contains information on the parameters from the admis-
sible set that is embodied in the data z0(t). It may be used to gain information
on individual or combinations of the parameters through marginalization. We
may also determine the information gained by comparing probability intervals
calculated from the pdf obtained from the data with those determined without
data. This comparison enables us to assess the added value of the data over our
a priori information. In addition, using the joint pdf, we can make predictions
on the probable behavior of the structure based on available information. The
structure’s behavior may be viewed as a random variable defined on the sam-
ple space Q. Thus, we may compute the distribution for that random variable
resulting from the data.

A drawback of the ”identical twin” approach is that many times a given
method may work well with some q0, but not with others. Our approach is
to view the parameters q0 themselves as random variables and consider an en-
semble of problems. If no problem is any more likely than any other, then
the generating parameters q0 may be considered to be uniformly distributed
over the admissible set Q. On the other hand, if there is information indicating
some problems are more likely than others, then this may be reflected in the
choice of the example problems. Here we view the q0 as uniformly distributed
over Q and consider an ensemble of problems chosen randomly over Q using a
uniformly distributed random number generator. We present ratios of 0.95 prob-
ability between a posteriori marginal distributions determined with the benefit
of data and marginal distributions obtained without the benefit of additional
data. These are then averaged over the ensemble of problems to obtain an indi-
cator of how much information on a particular parameter is obtained from the
data.
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The admissible set of parameters is the set Q that is specified using the
following bounds on parameters.

Minimum and maximum parameter bounds

parameter minimum maximum
mass1 0.5 2.5
mass2 0.5 2.5
mass3 0.5 2.5
Poisson’s ratio 0 0.5
Young’s modulus 1 20.0
density 0.25 0.75
damping 0.0 0.02

The results of the ensemble identical twin examples are given in the following
table. The last column indicates the ratio of the 0.95 probability interval divided
by 0.95 times the length of the intervals in the previous table. This is an
indicator of the reduction of the 0.95 interval due to the data and gives an idea
as to the general value of the data in estimating the parameter.

0.95 Probability intervals and ratios

parameter 0.025 0.975 difference difference for uniform distribution ratio
mass1 0.086 1.75 1.66 1.9 0.87
mass2 0.091 1.66 1.57 1.9 0.82
mass3 0.14 1.73 1.59 1.9 0.83
Poisson’s ratio 0.034 0.44 0.41 0.47 0.86
Young’s modulus 4.16 16.7 1.25 18.1 0.69
density 0.286 0.695 0.409 0.47 0.86
damping 0.002 0.018 0.016 0.019 0.85

From this table we observe that in all cases the 0.95 probability interval as been
reduced with the inclusion of the data. Apparently the Young’s modulus has
benefited most with at reduction of 31 percent.

While the marginal distributions give information of the individual param-
eters, a further indicator as to the value of the data is its impact on prediction
of state properties. Our view is that the joint pdf contains the information
of the material properties of the structure. We then can use the joint pdf to
predict the likely response of the structure under other conditions. For exam-
ple, we considered the prediction of the kinetic energy of mass 3 in a case in
which there is an activating point force on the structure at x = L/2. Thus, we
view the kinetic energy for as a random variable depending on the parameters
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q ∈ Q. As such, the cumulative distribution of the kinetic energy may be cal-
culated. In Figure 11 is presented the cumulative distributions obtained in the
presence of data and without the benefit of the data. That is, the a priori pdf
as simply the uniform distribution over Q and the a posteriori pdf with data
are used to calculate the distribution of the kinetic energy. The steeper curve
is the cdf obtained with data and indicates that there is a probability of 0.95
that the kinetic energy is between 0.015 and 0.03. Without the data there is a
0.95 probability that the kinetic energy is between 0.01 and 0.12. For this case
the data has brought about a substantial narrowing of the 0.95 interval for the
predicted response of the structure and thereby has substantially increased our
information on the state of the system.
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Figure 8: Wavelet approximation of the 3rd floor acceleration and the model-
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Figure 9: Deformation of the structure based on the model

27



−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6
0

20

40

60

80

100

120

140

160

180

zy

x

Figure 10: Deformation of the structure based on the model
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Figure 11: Cumulative distribution of the kinetic energy at mass 3
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